جامعة تكريت كلية الهندسة قسم الميكانيك

محاضرة تصميم الانابيب وخزان التمدد للمرحلة ا**لرابعة**

المادة: تكييف التاريخ ١١ شباط 2025

Example

Find the total pressure drop of a 60 m pipe length of a small building, if there are 3 open gate valve and 4 standard elbow as a fitting when a water flow through a pipe at a rate of 240 l/min. at 80 °C.

Solution

Pressure drop for a water flow through a pipe Found from chart (Figure 7-6) at (Q=240 l/min =4 l/s). the pressure drop per unit length $\Delta P/l$ value must be in the range (74 $\leq \Delta P/I \leq$ 392) and when $\Delta P/I$ was chosen to be $\Delta P/I= 150$ Pa the suitable value for the diameter will be D= (75 mm=3) inch).

At water temperature, Temp.=80 °C the correction factor value found from (Figure 7-7) after found the water velocity from Q = 4 I/s and D = 75mm, so that velocity=Q/Area= 1 m/s, so that correction factor value=0.88

Equivalent lengths of fitting found from Figure A5.5

Equivalent lengths for 3 open gate value=3*(1.7/3.28) = 1.54m

Equivalent lengths for 4 stander elbow=4*(8/3.28) = 4.84m

L_T= (60+4.84+1.54) =66.38 m

 $\Delta P/I=150 * 0.88$

 $\Delta P = (150*0.88) * 66.38 = 8424 Pa$

 $\Delta P = 8.424 \text{ kPa}$

جامعة تكريت كلية الهندسة قسم الميكانيك

محاضرة تصميم الانابيب وخزان التمدد للمرحلة الرابعة

Example: Find the volume of the Closed Expansion Tank for Chilled (Chiller) and Hot (Boiler) systems by using the following equation

$$\frac{v_t}{v_s} = (4.1 \times 10^{-4} \times t_m - 4.66 \times 10^{-3}) \times \frac{1}{\frac{p_i}{p_c} - \frac{p_i}{p_h}}$$

Where

 v_t : volume of the closed expansion tank (m³)

 t_m : Maximum water temperature in the system (°C)

 p_i : Pressure of expansion tank when water first enters 101 kPa

 p_c : Pressure of expansion tank before rising water temperature (kPa)

 p_h : Pressure of expansion tank when water temperature be hot or change. (kPa)

 t_m : maximum water temp. in the cooler Chilled system = 15 °C

or

 t_m : maximum water temp. in the heater Boiler = 80 °C

Volume of Closed Expansion Tank for cooler Chilled system

 p_c Pressure of expansion tank before rising water temperature in the chilled system = 621 kPa p_c Pressure of expansion tank before rising water temperature in the Boiler system = 550 kPa p_h Pressure of expansion tank when water temperature be hot or change in the chilled system *p_h* = 671 kPa

 p_h Pressure of expansion tank when water temperature be hot or change in the Boiler system

 $p_h = 659 \text{ kPa}$

Where

 v_s volume of the Chilled system = 4.5 m³

and

 v_s volume of the Boiler system = 1.7 m³

Closed Expansion Tank volume for Chilled system

$$\frac{v_t}{4.5} = (4.1 \times 10^{-4} \times 15 - 4.66 \times 10^{-3}) \times \frac{1}{\frac{100}{621} - \frac{100}{671}}$$

Expansion tank volume for Chilled system $v_t = 0.57 \text{ m}^3$

Closed Expansion Tank volume for Boiler system

$$\frac{v_t}{1.7} = (4.1 \times 10^{-4} \times 80 - 4.66 \times 10^{-3}) \times \frac{1}{\frac{100}{550} - \frac{100}{659}}$$

Expansion tank volume for hot system $v_t = 1.59 \text{ m}^3$

Expansion Tank volume for condenser system

Closed Expansion Tank not suitable for condenser system, because the cooling tower is open, so its connect directly to the tank to operate as **Open Expansion Tank**.

	Zone	Expansion Tank	Standard
		Volume m ³	Volume m ³
1	chiller	0.57	1
2	Boiler	1.59	1.5
3	Condenser	Connect with Tank	Open
			Expansion Tank